

Integrating Language and Vision to Generate Natural Language Descriptions of Videos in the Wild

Jesse Thomason¹, Subhashini Venugopalan¹, Sergio Guadarrama², Kate Saenko³, Raymond Mooney¹

(1) University of Texas at Austin, (2) University of California Berkeley, (3) University of Massachusetts Lowell

Results

Using Language Statistics to Clean Up Visual Detections

Consider the frames of the video below of a person playing a piano.

The state-of-the-art vision detection systems we use correctly identify a person in a kitchen engaged in a 'playing' activity. However, they also identify the computer keyboard in these frames as more salient than the piano. Using statistics mined from parsed corpora, our proposed system describes the video with "A person is playing the piano in the house," because language tells us that playing a piano is more felicitous than playing a computer keyboard.

Factor Graph Model for Integrating Evidence

speak

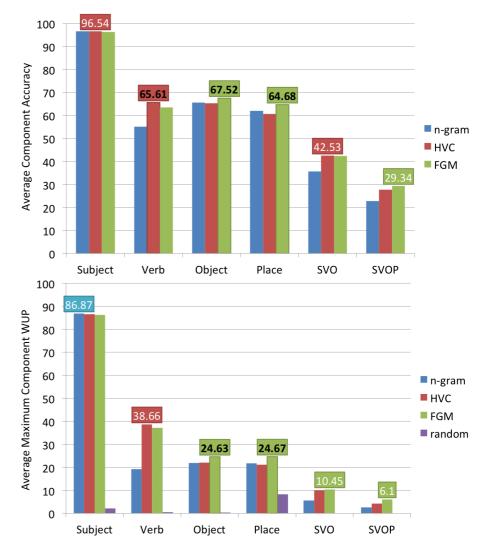
We use the probabilistic factor-graph model shown below to combine visual and linguistic evidence to predict the best subject (S), verb (V), object (O), and place (P) for a sentence description of a video. Thinking generatively, we determine the set of descriptive words which are most likely to have produced the video information we observe.

Activity	Vision Confidence	Entity	Vision Confidence	
slice	0.1909	egg	0.3108	
chop	0.1098	onion	0.2145	
play	0.0856	potato	0.2061	
:	:	:	:	

	0.0000	piano
Verb	Object	Language p(OIV)
chop	onion	0.1181
slice	onion	0.0791
chop	egg	0.0076
slice	egg	0.0073
:		:

Sample frames from a video to be described (left), and the factor graph model used for content selection (right). Visual confidence values are observed (gray potentials) and inform sentence components. Language potentials (dashed) connect latent words between sentence components.

Our Contributions



Bold averages are statistically significantly (p < 0.05) highest.

Examples

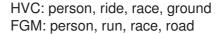
0.0000

Gold: person, run, race, (none)

We present a new method to perform content selection by integrating visual and linguistic information to select the best subject-verb-objectplace description of a video. This inclusion of scene information has not been addressed by previous video description works.

Videos			Components				
	Training	Testing		Subjects	Verbs	Objects	Places
	1297	670		45	218	241	12

We explore the scalability of our factor graph model (FGM) by evaluating it on a large dataset (outlined in the table above) of naturally occurring videos from YouTube. We demonstrate that our model improves a highest vision confidence (HVC) baseline of state-of-the-art entity and activity recognition at the video description task.



"A person is playing the guitar on the stage'

Gold: person, play, guitar, tree HVC: person, play, water, kitchen FGM: person, play, guitar, stage

"A person is playing a guitar in the house"

Gold: person, play, guitar, (none) HVC: person, pour, chili, kitchen FGM: person, play, guitar, house

HVC better alone

"A person is lifting a car on the road"

Gold: person, lift, car, ground HVC: person, lift, car, road FGM: person, drive, car, road