

Improving Black-box Speech Recognition **Using Semantic Parsing**

Rodolfo Corona, Jesse Thomason, Raymond J. Mooney Department of Computer Science, The University of Texas at Austin

Tan Da ranka

<u>Utterance</u>	Hypothesis List				<u>Hypothesis</u>
Bring a prism to Mr. John Smith	ASR Hypothesis	Semantic Form	Parser Confidence	LM Confidence	
	Bring a prison to Mr. John Smith	bring(hamburger, john)	5.310e-8	0.005	Bring a prism to Mr. Smith
					bring(a(λ x:i.(object(x))),smith
	Bring a prism to Ms. John Smith	bring(a(λ x:i.(prism(x))),john)	0.49	0.339	
	Bring a prism to Mr. John Smith	bring(a(λ x:i.(prism(x))),john)	0.49	0.64	

Introduction

Speech is a natural channel for human-computer interaction in robotics and consumer applications. Natural language understanding pipelines that start with speech can have trouble recovering from speech recognition errors. Black-box automatic speech recognition (ASR) systems, built for general purpose use, are unable to take advantage of in-domain language models that could otherwise ameliorate these errors. In this work, we present a method for reranking black-box ASR hypotheses using an in-domain language model and semantic parser trained for a particular task. Our re-ranking method significantly improves both transcription accuracy and semantic understanding over a state-of-the-art ASR's vanilla output.

Approach

We re-rank the *n*-best hypothesis list from an ASR system by interpolating scores from an in-domain semantic parser and language model. $h^* = \arg\max\left(S(h)\right)$

 $h \in H$ $S(h) = (1 - \alpha) \cdot S_{lm}(h) + \alpha \cdot S_{sem}(h)$

Dataset

We collected a dataset of 5,161 speech utterances paired with their transcriptions and logical semantic forms from 32 participants.

Utterances randomly generated using templates. Eight distinct template were used across 3 actions, with 70 items, 69 adjectives, over 20 referents for people, and a variety of wordings for actions and filler, resulting in over 400 million possible utterances.

Template	Example Sentences	Corresponding Semantic Form

Semantic Parsing

Used a Combinatory Categorical Grammar (CCG) based probabilistic CKY parser

Surface Form	CCG Category	Semantic Form
walk	S/PP	$\lambda x.(\operatorname{walk}(x))$
to	PP/NP	$\lambda x.(x)$
john	Ν	john

Language Modeling

	roll over to dr bell's office	walk(the(λx .(office(x) \wedge possesses(x, tom))))
(f) (w) to (p) 's office	can you please walk to john's office	walk(the($\lambda x.(office(x) \land possesses(x, john)))$)
	run over to professor smith's office	walk(the($\lambda x.(office(x) \land possesses(x, john))))$
	go and bring coffee to jane	bring(coffee, jane)
(f) (d) (i) to (p)	please deliver a red cup to tom	bring(a($\lambda x.(red(x) \land cup(x))$), tom)
	would you take the box to jack	bring(box, jack)
	please look for ms. jones in the lab	searchroom(3414b, jane)
(f) (s) (p) in (l)	can you find jack in room 3.512	searchroom(3512, jack)
	search for the ta in the kitchen	searchroom(kitchen, jack)

Results

Tested our methodology using the Google Speech API

- Requested 10 hypotheses per utterance.
- Gave parser budget of 10 seconds per hypothesis.

Measured system performance over 5 different conditions:

- **Oracle**: Best achievable performance from re-ranking.
- **ASR**: System performance without re-ranking.
- <u>SemP</u>: Re-ranking using solely semantic parser scores.
- <u>LM</u>: Re-ranking using solely language model scores.
- **Both:** Re-ranking using interpolated semantic parser and language model scores.

Evaluated system performance on 3 metrics:

Used a trigram back-off language model with Witten-Bell discounting

$$P(w_n|w_1, ..., w_{n-1}) = P(w_n|w_{n-2}, w_{n-1})$$

$$P(w_1, ..., w_n) = \prod_{i=1}^{N} P(w_i | w_{n-2}, w_{n-1})$$

Acknowledgements

This work is supported by an NSF EAGER grant (IIS-1548567), and NSF NRI grant (IIS-1637736), and a National Science Foundation Graduate Research Fellowship to the second author.

- Word error rate (WER): Computes number of *insertions*, *deletions*, and *substitutions* in hypothesis in order to measure transcription accuracy.
- Semantic form accuracy (ACC): Checks for a one-to-one match between hypothesis logical form and correct logical form.
- **Semantic form F1**: Measures harmonic mean of *recall* and *precision* of the predicates in the hypothesis semantic form.

Model	WER	Acc	F1
Oracle	13.4 ± 4.2	27.9 ± 3.8	39.3 ± 3.9
ASR	30.8 ± 4.6	7.38 ± 1.9	15.9 ± 3.0
SemP	20.8 ± 5.3	24.8 ± 3.9	38.3 ± 4.1
LM	15.7 ± 4.7	22.7 ± 3.3	31.7 ± 4.1
Both	16.8 ± 4.6	26.3 ± 3.7	38.1 ± 4.1

All conditions significantly improve performance over baseline.