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Human Intelligible Low-Dimensional Regression

We consider the problem of estimating a regression
function in the common situation where the number of
features is small, where interpretability of the model
is a high priority, and where simple linear or additive
models fail to provide adequate performance. To ad-
dress this problem, we present Maximum Variance To-
tal Variation denoising (MVTV). MVTV divides the fea-
ture space into blocks of constant value and fits the
value of all blocks jointly via a convex optimization rou-
tine. Our method is fully data-adaptive, in that it incor-
porates highly robust routines for tuning all hyperpa-
rameters automatically.

State of the Art: CRISP

Petersen et al. (2016) propose Convex Regression
with Interpretable Sharp Partitions (CRISP). They fo-
cus on the 2d scenario and divide the (x1, x2) space
into a q×q grid via a data-adaptive procedure. CRISP
applies a Euclidean penalty on the differences be-
tween adjacent rows and columns of M. The final esti-
mator is then learned by solving the convex optimiza-
tion problem,

minimize
M∈Rq×q
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n∑
i=1

(yi − Ω(M, x1i, x2i))2 + λP(M) , (1)

where Ω is a lookup function mapping (x1i, x2i) to the
corresponding element in M. P(M) is the group-fused
lasso penalty on the rows and columns of M,
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where Mi · and M·i are the i th row and column of M,
respectively.

Maximum Variance Total Variation Denoising

Problem reformulation. We rewrite (1) as a weighted
least-squares problem,

minimize
β∈Rq2

1
2

q2∑
i=1

ηi(ỹi − βi)
2 + λg(β) , (3)

where β = vec(M) is the vectorized form of M, ηi is
the number of observations in the i th cell, and ỹi is the
empirical average of the observations in the i th cell.
g(·) is a penalty term that operates over a vector β

rather than a matrix M.

Graph TV. We choose g(·) to be a graph-based total
variation penalty,

g(β) =
∑

(r ,s)∈E

|βr − βs| , (4)

where E is the set of edges defining adjacent cells on
the q × q grid graph. Having formulated the problem
as a graph TV denoising problem, we can now use
the convex minimization algorithm of Barbero and Sra
(2014) to efficiently solve (3).

Maximum variance q selection. The main challenge
in our problem is to adaptively choose q to fit the ap-
propriate level of overall data sparsity. We do this by
choosing the grid which maximizes the sum of vari-
ances of all cells:

q = argmax
q

∑
c∈C(q)

ˆvar(yc) , (5)

where C(q) is the set of cells in the q × q grid and
var(∅) = 0.
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Case Study: Austin Crime Data

(a) Raw (b) CART

(c) CRISP (d) MVTV

Quantitative Evaluation.
MVTV outperforms both CART and CRISP in terms
of AIC, where degrees of freedom is the number of
plateaus of constant value.

Austin Crime Data
AIC Human error ×10−2

CART 11139.29 3.24±0.341
CRISP 18326.33 3.99±0.664
MVTV 10327.58 2.75±0.334

Human Interpretability Evaluation.
Mechanical Turk study with human annotators asked
to choose a grayscale value for a held-out cell in
the center of a 7 × 7 patch of data. Each annota-
tor was shown a patch as rendered by MVTV, CART,
CRISP, and as raw data; each task involved two ran-
domly sampled patches from the Austin crime dataset
(4 × 2 = 8 patches per annotator, shown in random
order).
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