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Natural Language Understanding for Robots
● Robots are increasingly present in human environments

○ Stores, hospitals, factories, and offices

● People communicate in natural language

● Robots should understand natural language commands from humans
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Natural Language Understanding for Robots
● Different robots have different sensing and manipulation capabilities

● Different domains require understanding different vocabularies

● Learning paradigms can be applicable across platforms and domains
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“alert me if her heart rate decreases”
“bring me his chart”
“go and get the family”
“scalpel”

“text me when the speaker arrives”
“grab the heavy, green mug”
“lead him to alice’s office”
“get out of the way”



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action

● World knowledge about people and the surrounding office space
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action

● World knowledge about people and the surrounding office space

● Perception information to identify referent object
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Natural Language Understanding for Robots
● As much as possible, solve these problems independent of robot and domain

● Interaction with humans can strengthen understanding over time

● Use human-robot dialog and interaction as a learning signal
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Outline
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Learning to Interpret Natural 
Language Commands through 
Human-Robot Dialog
[Thomason et al. IJCAI 2015]

Learning Multi-Modal 
Grounded Linguistic 
Semantics by Playing "I Spy"
[Thomason et al. IJCAI 2016]
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0,1 ;“kiwi vine”
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“chinese grapefruit”

0

Multi-Modal Word
Synset Induction
[Thomason, Mooney
IJCAI 2017]
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● Initialize language understanding with minimal resources

● Use human-robot dialogs to get text/semantic form pairs

● Improve semantic parsing over time by retraining on induced pairs

Learning to Interpret Natural Language Commands 
through Human-Robot Dialog  



Learning to Interpret Natural Language Commands 
through Human-Robot Dialog  

12

Semantic 
Understanding

Commanding 
Robots Dialog

Thomason et 
al., 2015



13

Semantic 
Understanding

Commanding 
Robots Dialog

Thomason et 
al., 2015

Semantic Parsing
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Dialog



+ Commanding Robots
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Dialog can be used for 

commanding robots

[Matuszek, 2012; Mohan, 2012]
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Semantic 
Understanding

Commanding 
Robots Dialog

Thomason, 
2015



Background: Semantic Parsing
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Go to Alice’s office and 
get the light mug for 

the chair.

go(the(λx.(office(x) ⋀ owns(alice, x)))) ⋀ 
deliver(the(λy.(light(y) ⋀ mug(y))), bob)

Semantic 
Parser

Training 
Data



Background: Semantic Parsing
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● Translate from human language to formal language

● We use combinatory categorial grammar formalism [Zettlemoyer, 2005]

● Words assigned part-of-speech-like categories

● Categories combine to form syntax of utterance



Background: Semantic Parsing

19

Alice ‘s office

● Small example of composition



Background: Semantic Parsing

20

Alice ‘s office

NP NP\NP/N N

● Small example of composition

● Add part-of-speech-like categories



Background: Semantic Parsing

21

Alice ‘s office

NP NP\NP/N N

● Add part-of-speech-like categories

● Categories combine right (/) and left (\) to form trees

NP\NP

NP



Background: Semantic Parsing
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Alice ‘s office

alice λP.λy.(the(λx.(P(x) ⋀ owns(y, x)))) office

● Leaf-level semantic meanings can be propagated through tree

λy.(the(λx.(office(x) ⋀ owns(y, x))))

the(λx.(office(x) ⋀ owns(alice, x)))



Background: Semantic Parsing
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go(the(λx.(office(x) ⋀ owns(alice, x)))) ⋀ 
deliver(the(λy.(light2(y) ⋀ mug1_cup2(y))), bob)

● `get’ refers to the action predicate deliver

● `light’ could mean light in color or light in weight

● bob is referred to as `the chair’, his title

Go to Alice’s office and 
get the light mug for 

the chair.



Background: Semantic Parsing
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● Parsers can be trained from paired examples

● Sentences and their semantic forms

● Treat underlying tree structure as latent during inference [Liang 2015]

● With pairs of human commands and semantic forms, can train a semantic 

parser for robots



Background: Semantic Parsing
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● Parsers can be trained from paired examples

● For example, parameterize parse decisions in a weighted perceptron model

○ Word -> CCG assignment counts (e.g. “for -> PP/NP; “alice -> NP”)

○ CCG production counts (e.g. “PP -> PP/NP NP”; “S -> NP S\NP)

○ Word -> semantics counts

(e.g. “the chair -> bob”; “the chair -> the(λx.(chair(x)))”)

● Guide search for best parse using perceptron

● Update parameters during training by contrasting best scoring parse to known 

true parse; for example using hinge loss



Background: Language Grounding
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“Alice’s office”

the(λx.(office(x) ⋀ owns(alice, x)))

● Some x that is an office and is owned by Alice

● Membership and ownership relations can be kept in a knowledge base

● Created by human annotators to describe surrounding environment



+ Semantic Parsing
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Past work uses semantic parsing as an 

understanding step to command robots

[Kollar, 2013]
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Semantic 
Understanding

Commanding 
Robots Dialog

Thomason, 
2015
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Generating New Training Examples
● Past work generates training data for a parser given a corpus of 

conversations [Artzi, 2011]
○ In conversations, system utterances are tagged with gold semantic meanings

● We pair confirmed understanding from dialog with previous 

misunderstandings
○ When system understands meaning Y, assume all past utterances Xi that tried to point to Y 

meant Y 
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Generating New Training Examples
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Generating New Training Examples
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Generating New Training Examples



Generating New Training Examples
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Generating New Training Examples
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Generating New Training Examples
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Generating New Training Examples
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Generating New Training Examples
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Generating New Training Examples



Experiments
● Hypothesis: Performing incremental re-training of a parser with 

sentence/parse pairs obtained through dialog will result in better user 

experience than using a pre-trained parser alone

● Tested via:

○ Mechanical Turk - many users, unrealistic interaction (just text, no robot)

○ Segbot Platform - few users, natural interactions with real world robot
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Mechanical Turk Experiment
● Four batches of ~100 users each

● Retraining after every batch (~50 training goals)

● Performance measured every batch (~50 testing goals)

● Goals:
○ Navigation - user told the robot is needed in a certain room (one action, single argument)

○ Delivery - user told a certain person needs a certain item (one action, two arguments)

43



Mechanical Turk Dialog Turns

44



Mechanical Turk Survey Responses
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Mechanical Turk Survey Responses
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Segbot Experiment
● 10 users with baseline system (no additional training)

● Robot roamed the office for four days

○ 34 conversations with users in the office ended with training goals

○ System re-trained after four days

● 10 users with re-trained system

47



Segbot Dialog Success
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Segbot Survey Responses

49



Segbot Survey Responses
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Findings
● Lexical acquisition reduces dialog lengths for multi-argument predicates like 

delivery

● Retraining causes users to perceive the system as more understanding

● Retraining leads to less user frustration

● Inducing training data from dialogs allows good language understanding 

without large, annotated corpora to bootstrap system

● If domain changes or new users with new lexical choices arrive, can adapt 

on-the-fly
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Findings
● Inducing training data from dialogs allows good language understanding 

without large, annotated corpora to bootstrap system

● If domain changes or new users with new lexical choices arrive, can adapt 

on-the-fly
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“alert me if her heart rate decreases”
“bring me his chart”
“go and get the family”
“scalpel”

“text me when the speaker arrives”
“grab the heavy, green mug”
“lead him to alice’s office”
“get out of the way”



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action ✅

● World knowledge about people and the surrounding office space ✅

● Perception information to identify referent object

53



Background: Language Grounding
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“the light mug”

the(λy.(light(y) ⋀ mug(y)))

● Some y that is light in weight and could be described as a mug

● These predicates are perceptual in nature and require using sensors to 

examine real-world objects for membership



Outline
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Learning to Interpret Natural 
Language Commands through 
Human-Robot Dialog
[Thomason et al. IJCAI 2015]

Learning Multi-Modal 
Grounded Linguistic 
Semantics by Playing "I Spy"
[Thomason et al. IJCAI 2016]

“kiwi”2; ...“kiwi”3; ...

“kiwi”
0,1 ;“kiwi vine”

0;
“chinese grapefruit”

0

Multi-Modal Word
Synset Induction
[Thomason, Mooney
IJCAI 2017]



Learning Multi-Modal Grounded Linguistic Semantics 
by Playing “I Spy”
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Human-robot 
Interaction

Multi-modal 
Perception Grounding

Thomason, 
2016
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“An empty metallic aluminum container”

https://docs.google.com/file/d/0B8yz8f7ZjUCdUXVRNlk5M1NEcTg/preview
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“An empty metallic aluminum container”
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Robot makes guesses until human confirms it found the right object.



Learning Multi-Modal Grounded Linguistic Semantics 
by Playing “I Spy”

60

Human-robot 
Interaction

Multi-modal 
Perception Grounding

Thomason, 
2016



Grounding
● Mapping from expressions like “light mug” to an object in the real world is the 

symbol grounding problem [Harnad, 1990]

● Grounded language learning aims to solve this problem
○ Essential for robots to perform object retrieval tasks (e.g. “bring me his chart”; “grab the heavy, 

green mug”)

● Loads of work connecting language to machine vision

[Roy, 2002; Matuszek, 2012; Krishnamurthy, 2013; Christie, 2016]

● Some work connecting language to other perception, such as audio

[Kiela, 2015]

● We ground words in more than just vision 61



Learning Multi-Modal Grounded Linguistic Semantics 
by Playing “I Spy”

62

Human-robot 
Interaction

Multi-modal 
Perception Grounding

Thomason, 
2016



Multi-Modal Perception
● For every object, perform a set of exploratory behaviors (with robotic arm) 

[Sinapov, 2016]

● Gather audio signal from microphone and, proprioceptive and haptic 

information from arm motors

● “Look” is just one way to explore; gathers deep features, color histograms, 

and fast point feature histograms

● Feature representation of each object has many sensorimotor contexts

● Context is a combination of an exploratory behavior and associated sensory 

modality
63



Multi-Modal Perception
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Multi-Modal Perception
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lift, hold, lower drop



Multi-Modal Perception

66

press push



Multi-Modal Perception

67



Multi-Modal Perception
● Still need language labels for objects

● Annotating each object with every possible descriptor is unrealistic and boring

● Can’t use online annotators to get non-visual descriptors like “heavy”, “full”, or 

“rattles”; objects need to be interacted with in person

● Instead, we introduce a human-in-the-loop for learning

● In a game!

68



Learning Multi-Modal Grounded Linguistic Semantics 
by Playing “I Spy”
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Human-robot 
Interaction

Multi-modal 
Perception Grounding

Thomason, 
2016



Human-robot Interaction
● Past work has used “I, Spy”-like games to gather grounding annotations from 

users [Parde 2015]
○ Humans like playing with robots (for a while), especially if the robots get smarter

● Human offers natural language description of object

● Robot strips stopwords and treats remaining words as predicate labels

● On robot’s turn, use predicates to determine best way to describe target 

object

● Ask for explicit yes/no on whether some predicates apply to target

(e.g. “would you use the word ‘heavy’ to describe this object?”)
70
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“Would you use the word ‘half-full’ when describing this object?”

“Yes”

https://docs.google.com/file/d/0B8yz8f7ZjUCdallSN3ZRcnk1RlE/preview
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R: “Would you use the word ‘half-full’ when describing this object?”

H: “Yes”



Building Perceptual Classifiers
● Get positive labels from human descriptions of target objects

● Get positive and negative labels from yes/no answers to specific predicate 

questions

● Build SVM classifiers for each sensorimotor context given positive and 

negative objects for each predicate

● Predicate classifier is linear combination of context SVMs

● Weight each SVM’s decision by kappa agreement with users using 

leave-one-out x-val over objects

73



Building Perceptual Classifiers

74

“empty”?

Sensorimotor 
context SVM

Prediction gives 
sign in {-1, 1}

Agreement with 
human labels 
under 
leave-one-out xval 
gives magnitude



Building Perceptual Classifiers
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(0.02 + … + (-0.04) + 0.8 + 0.4 + 0.02) / 18 = 0.076

“empty”? Prediction gives 
sign in {-1, 1}

Agreement with 
human labels 
under 
leave-one-out xval 
gives magnitude



Experiments
● 32 objects split into 4 folds of 8 objects each

● Games played with 4 objects at a time

● Two systems: vision only and multi-modal; former only uses look behavior

● Each participant played 4 games, 2 with each system (single blind), such that 

each system saw all 8 objects of the fold

● After each fold, systems’ predicate classifiers retrained given new labels

● Measure game performance; classifiers always seeing novel objects during 

evaluations

76



Results for Robot Guesses
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Results for Robot Guesses
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Results for Predicate Agreement

79



Correlations to Physical Properties
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● Calculated Pearson’s r between predicate decisions in [-1, 1] and object 

height/weight

● vision only system learns no predicates with p < 0.05 and |r| > 0.5

● multi-modal system learns several correlated predicates:

○ “tall” with height (r = 0.521)

○ “small” against weight (r = -0.665)

○ “water” with weight (r = 0.549)
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“A tall blue cylindrical container”



Findings

82

● Auditory, haptic, and proprioceptive senses help understand words humans 

use to describe objects

● Some predicates assisted by multi-modal
○ “tall”, “wide”, “small”

● Some can be impossible without multi-modal
○ “half-full”, “rattles”, “empty”



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action

● World knowledge about people and the surrounding office space

● Perception information to identify referent object ✅

○ But we don’t handle different senses of light
83



Background: Language Grounding
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“light” “mug” “cup”word

instances



Background: Language Grounding
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light1 light2 mug1_cup2 cup1

“light” “mug” “cup”word

predicate

instances



Outline
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Learning to Interpret Natural 
Language Commands through 
Human-Robot Dialog
[Thomason et al. IJCAI 2015]

Learning Multi-Modal 
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Multi-Modal Word Synset Induction
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Synonymy 
Detection

Multi-modal 
Perception

Word Sense 
Induction

Thomason, 
2017



Multi-Modal Word Synset Induction
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Synonymy 
Detection

Multi-modal 
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Word Sense Induction
● Task of discovering word senses [Pedersen and Bruce, 1997]

● “Bat”

○ Baseball, animal

● “Light”

○ Weight, color

● “Kiwi”

○ Fruit, bird, people

● Represent instances as vectors of their context; cluster to find senses
○ [Yarowsky, 1995; Pedersen and Bruce, 1997; Schutze, 1998; Bordag, 2006; Navigli, 2009; 

Manandhar et al., 2010; Di Marco and Navigli, 2013] 89



Multi-Modal Word Synset Induction
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Synonymy 
Detection

Multi-modal 
Perception

Word Sense 
Induction

Thomason, 
2017



Synonymy Detection
● Given words or word senses, find synonyms

● “Ball” and “sphere”

● “Round” and “circular”

● “Kiwi” and “New Zealander” (for one sense of “kiwi”)

● Represent instances as vectors of their context; cluster means to find 

synonyms
○ Related to synonym detection [Turney, 2001] and lexical

substitution [McCarthy and Navigli, 2009]
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Word Sense Induction + Synonymy Detection
● First finding senses, then merging those senses through synonymy detection

● We call this synset induction, the task of finding synonymous sets of word 

senses

● Synsets used in WordNet [Fellbaum, 1998] and analogous ImageNet [Deng et 

al., 2009] corpora
○ Represent hierarchical collections of synonymous noun phrases

○ e.g. “kiwi”, “chinese grapefruit”, “kiwi vine”
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Multi-Modal Word Synset Induction
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Synonymy 
Detection

Multi-modal 
Perception

Word Sense 
Induction

Thomason, 
2017



Multi-modal Perception
● Can use more than text to contextualize a word

● Pictures depicting the word or phrase give visual information

94

“about 70% of bat species are insectivores”

“most of the oldest known, definitely identified bat 
fossils were already very similar to modern 
microbats”

“a baseball bat is divided into several regions”

“hickory has fallen into disfavor over its greater 
weight, which slows down bat speed”



Dataset
● Gather many leaf-level synsets (6710) and images from ImageNet

● Get a mix of noun phrase types (8426 total)
○ Many past works assume all words are polysemous

(e.g. [Loeff et al., 2006; Saenko and Darrell, 2008])

● Provides “gold” synsets we aim to construct from image-level instances

95

Noun phrase relationships

synonymous polysemous both neither

4019 804 1017 2586



Dataset
● Use reverse-image search to find webpages of text for each image

○ Get textual features and perform clustering in multi-modal space

96

Reverse image search
Get sentences of webpage

“about 70% of bat species are 
insectivores”
“most of the oldest known, 
definitely identified bat fossils 
were already very similar to 
modern microbats”
….



text corpusDataset
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[sentences]

[sentences]

[sentences]

[bag of words]

[bag of words]

[bag of words]

LSA

256-dimensional 

text feature space



Dataset
Text features for image

98

“about 70% of bat species are 
insectivores”
“most of the oldest known, 
definitely identified bat fossils 
were already very similar to 
modern microbats”
….

LSA 
emb



Dataset Visual features for image (penultimate 

4,096 unit layer of VGG network)
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VGG network
[Simonyan and Zisserman, 2014]



Dataset
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Dataset

101

“kiwi”

“chinese grapefruit”

“kiwi vine”

● Each image has 

associated text and visual 

features

● Feature embeddings used 

to find distances between 

image observations



Goal
● Construct ImageNet-like synsets from images labeled with just noun phrase

● First perform word-sense induction on mixed-sense noun phrase inputs

● Given induced word senses, perform synonymy detection to form synsets

● Compare constructions considering text-only, visual-only, and

multi-modal spaces

● For multi-modal space, interpolate distance calculations in text and visual 

spaces
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Word Sense Induction
● For every noun phrase, 

we perform k-means 

clustering to find senses

● Determine k by the gap 

statistic

[Tibshirani et al., 2001]

103

“kiwi”

“chinese grapefruit”

“kiwi vine”



Word Sense Induction
● For every noun phrase, 

we perform k-means 

clustering to find senses

● Determine k by the gap 

statistic

[Tibshirani et al., 2001]
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“kiwi”0

“kiwi”1

“kiwi”2
“kiwi”3



Synonymy Detection
● Greedily merge nearest 

neighboring clusters

● Use cluster (sense) 

means to represent them

● Cap merge maximum 

senses (20, in our 

experiments)

● Results in synsets

105

“kiwi”0

“kiwi”1

“kiwi”2
“kiwi”3

“chinese grapefruit”0

“kiwi vine”0



Synonymy Detection
● Greedily merge nearest 

neighboring clusters

● Use cluster (sense) 

means to represent them

● Cap merge maximum 

senses (20, in our 

experiments)

● Results in synsets
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“kiwi”2; ...“kiwi”3; ...

“kiwi”
0,1 ;“kiwi vine”

0;
“chinese grapefruit”

0



Experiments
● Held out the synsets used to train the VGG as validation data

● Set hyperparameters for clustering and induced LSA text feature space from 

validation data

● Ran word sense induction and synonymy detection with text-only, visual-only, 

and multi-modal features

● Measure homogeneity, completeness, and their harmonic mean between 

induced synsets and ImageNet synsets
○ Analogous to precision, recall, and f-measure for sets of sets

[Manandhar et al., 2010],
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Results
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Human Evaluations
● Synset induction tends to join things ImageNet separates

● ImageNet separates people by nationality (e.g. “Austrian” and “Croatian”)

● ImageNet has odd categories for describing people (e.g. “energizer”)

● We evaluate induced synsets and ImageNet synsets by human judgements of 

sensibility
○ Humans shown all synsets a sampled noun phrase ended up in for each system

● Use paired t-test to determine whether humans statistically significantly favor 

ImageNet over induced synsets
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Human Evaluations

111



112

● Text-only and 

vision-only statistically 

significantly less 

favored versus 

ImageNet

● Multi-modal difference 

not significant



Findings

113

● Synset induction can be used to create ImageNet-like resource at leaf level 

from observations tagged with single labels

● Image and text features together lead to synsets that more closely match 

ImageNet’s

● Human annotators rate multi-modal synsets sensible 84% as often as 

ImageNet synsets



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action

● World knowledge about people and the surrounding office space

● Perception information to identify referent object

○ Now we have methodology to identify senses of “light” ✅
114



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action

● World knowledge about people and the surrounding office space

● Perception information to identify referent object
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Natural Language Understanding for Robots
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action ✅

● World knowledge about people and the surrounding office space ✅

● Perception information to identify referent object ✅
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Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

● Commands that need to be actualized through robot action ✅

● World knowledge about people and the surrounding office space ✅

● Perception information to identify referent object ✅

○ With methods to handle polysemy and synonymy ✅
119
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“chinese grapefruit”

0



Future Directions
● Synset induction for multi-modal, perceptually grounded predicates

● Grounding semantic parses against both knowledge and perception

● New opportunities for continuous learning

120



Synset Induction for Grounded Predicates

121

● Differs from completed work on synset induction

● Multiple labels per object, rather than single noun phrase associated with 

each

● Completed work with two modalities simply averaged representation vector 

distances

● With many multiple perceptual contexts, more sophisticated combination 

strategies may be possible

○ For example, “light” senses are visible by comparing context relevance



● Parser can return many parses, ranked with confidence values

● Perception predicates return confidence per object in the environment

● Combine confidences to get joint decision on understanding

Semantic Re-ranking from Perception Confidence

122

“the light mug”

light1 mug1

light2 mug1

0.3 0.8

0.7 0.8

0.1 0.9

0.2 0.9

0.6

0.4

light1 mug1

light2 mug1

0.6 * 0.3 * 0.8 = 0.144

0.4 * 0.7 * 0.8 = 0.224

p
a
r
s
e

p
e
r

p
e
r

re-ranking



Perception Training Data from Dialog
● “Bring me the light mug”

● Human can confirm correct object was delivered

● Then delivered object is positive example for light2 and mug1

123



Natural Language Understanding for Robots

Go to Alice’s office and 
get the light mug for 

the chair.

124



Natural Language Understanding for Robots

125

I will go to Room 1, 
pick up a light mug 

object, and deliver it to 
Bob. 



Natural Language Understanding for Robots

126

“alert me if her heart rate decreases”
“bring me his chart”
“go and get the family”
“scalpel”

“text me when the speaker arrives”
“grab the heavy, green mug”
“lead him to alice’s office”
“get out of the way”

“kiwi”2; ...“kiwi”3; ...

“kiwi”
0,1 ;“kiwi vine”

0;
“chinese grapefruit”

0



Thanks!
● Dissertation Committee
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● NSF, Stefanie Tellex, Brown University Computer Science, and you
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Graded Adjectives
● Think of gradation as a form of polysemy

● Semantic parser can use surrounding context

● Re-ranking of parses, as discussed, can help disambiguate
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words predicates
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Comparative Adjectives
● E.g. "taller”, “heavier”

● Take two arguments: obj1, obj2

● Train classifier on the feature differences between obj1, obj2

● Can otherwise be handled with existing architecture

● Superlatives: majority winner object in pairwise comparative
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“An empty metallic aluminum container”

+ negative examples from follow-up questions

Sparse Perceptual Data
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Sparse Perceptual Data

Kappas with human labels using per-context-xval distributed per predicate

drop/audio drop/haptic look/color ... press/haptic

red .057 .065 .074 ... .051

half-full .072 .064 .017 ... .063

... ... ... ... ... ...

aluminum .10 .075 .075 ... .055

● Spurious co-occurrences give misleading kappas
○ What if your sparse sample of yellow objects are all heavy?
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Room for More Information from Humans

Human:“An empty metallic aluminum 

container”

Robot: “Would you use the word 

“empty” to describe this object?”

“empty”?

Sensorimotor 
context SVM

Robot: “How can you tell if something 

can be described as “empty”?”

Human: “You can pick it up.”
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Room for More Information from Humans
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Kappas with human labels using per-context-xval distributed per predicate

grasp/audio grasp/haptic look/color ... lift/haptic

red 0 0 .5 ... 0

half-full 0 0 0 ... .25

... ... ... ... ... ...

aluminum .25 .25 .25 ... 0

● Use human annotations to restrict contexts to relevant behaviors
○ Makes spurious kappas less likely by masking irrelevant behaviors



Guiding Language Grounding with Multiple 
Interaction Behaviors

140

Language 
Modeling

Multi-modal 
Perception

Human-Robot 
Interaction

Ongoing Work



Room for More Information from Language
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● In past work, decision is made for each predicate p on object o as

● With the sign of d determining whether p applies (each SVM returns 1 or -1)

● Thus, for each context c, we consider only the confidence kappa associated 

with predicate p

● Intuition: if predicate q is similar to predicate p and has high confidence in 

context c, maybe p should too
○ “Green” is similar to “mauve”, so maybe we should trust look/color for mauve too

d = ∑c in contextsκc,pSVMc(o)



Room for More Information from Language
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● Calculate the cosine similarity between every predicate pair in word2vec 

space and set confidence based on kappas from similar predicates
○ Our cosine similarity ranges in [0, 1] with distances less than 0 rounded up

● Then the decision for predicate p with embedding becomes

d = ∑c in contextsweκc,pSVMc(o)

weκc,p = ∑q in predicatesκc,qcos(ep,eq)



Experiments
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● Gather annotations for behaviors after demonstrating them on a sample 

object

● “What behaviors would you engage in to determine if ____ could be used to 

describe the object?”

● Six of 14 annotators used, with average kappa=0.47 (moderate agreement)

● We use Google News embeddings to embed our predicates, getting cosine 

similarities for 76 out of 81 of them
○ Missing words are hyphenated like “half-full” or odd compounds like “spraycan”

○ Missing words given uniform distance to one another



(Preliminary) Results

● Adding behavior and 

modality annotations 

helps

● Adding word 

embeddings may 

generalize meanings

too much
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Findings
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● Going beyond obtaining true/false labels on a per predicate basis for objects 

may speed perceptual grounding with sparse data

● Potential to reduce exploratory behaviors needed on a new object
○ To determine if something is “green”, we only need to look at it

● Adding unsupervised information from large text corpora allows us to share 

label information
○ Lots of labels for “green” and few for “mauve” but we know “mauve” is a color and can avoid 

spurious results from other contexts


